The local motivic monodromy conjecture holds generically

Alan Stapledon

SMRI

31 May, 2023

Joint work with Matt Larson and Sam Payne

Alan Stapledon The local motivic monodromy conjecture holds generically

Alan Stapledon The local motivic monodromy conjecture holds generically

∃ ► < ∃ ►</p>

Fix
$$f \in \mathbb{Z}[x_1, \dots, x_n]$$
, $f(\underline{0}) = 0$.
Ex: $f(x, y) = y^2 - x^3$.

Fix
$$f \in \mathbb{Z}[x_1, \dots, x_n]$$
, $f(\underline{0}) = 0$.
Ex: $f(x, y) = y^2 - x^3$.

Want to understand solutions to f = 0 locally near $\underline{0}$.

• • = • • = •

Fix
$$f \in \mathbb{Z}[x_1, \dots, x_n]$$
, $f(\underline{0}) = 0$.
Ex: $f(x, y) = y^2 - x^3$.
Want to understand solutions to $f = 0$ locally near arithmetic: $x_i \in \mathbb{Z}/p^m\mathbb{Z}$, topology: $x_i \in \mathbb{C}$

<u>0</u>.

Fix
$$f \in \mathbb{Z}[x_1, \ldots, x_n]$$
, $f(\underline{0}) = 0$.
Ex: $f(x, y) = y^2 - x^3$.
Want to understand solutions to $f = 0$ locally near $\underline{0}$.
arithmetic: $x_i \in \mathbb{Z}/p^m\mathbb{Z}$, topology: $x_i \in \mathbb{C}$

Local monodromy conjectures

If $\alpha \in \mathbb{Q}$ is a pole of a rational function associated to f, then $\exp(2\pi i\alpha)$ is an eigenvalue of a matrix associated to f.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Alan Stapledon The local motivic monodromy conjecture holds generically

★ E ► < E ►</p>

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

 $\{|\{x \in (\mathbb{Z}/p^m\mathbb{Z})^n : f(x) = 0, x \equiv \underline{0} \mod p\}| : m \in \mathbb{Z}_{>0}\}$

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$\{|\{x \in (\mathbb{Z}/p^m\mathbb{Z})^n : f(x) = 0, x \equiv \underline{0} \mod p\}| : m \in \mathbb{Z}_{>0}\}$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

 $\{|\{x \in (\mathbb{Z}/p^m\mathbb{Z})^n : f(x) = 0, x \equiv \underline{0} \mod p\}| : m \in \mathbb{Z}_{>0}\}$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

 $Z_p(s)$ the local p-adic zeta function.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

 $\{|\{x \in (\mathbb{Z}/p^m\mathbb{Z})^n : f(x) = 0, x \equiv \underline{0} \mod p\}| : m \in \mathbb{Z}_{>0}\}$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

 $Z_p(s)$ the local p-adic zeta function.

Example: $f(x, y) = y^2 - x^3$.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$\{|\{x \in (\mathbb{Z}/p^m\mathbb{Z})^n : f(x) = 0, x \equiv \underline{0} \mod p\}| : m \in \mathbb{Z}_{>0}\}$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

 $Z_p(s)$ the local p-adic zeta function.

Example: $f(x, y) = y^2 - x^3$. For $p \notin \{2, 3\}$, $Z_p(s) = \frac{(p-1)(p^{5s+5} - p^{2s+2} + p^{s+2} - 1)}{(p^{s+1} - 1)(p^{6s+5} - 1)}$.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$\{|\{x \in (\mathbb{Z}/p^m\mathbb{Z})^n : f(x) = 0, x \equiv \underline{0} \mod p\}| : m \in \mathbb{Z}_{>0}\}$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

 $Z_p(s)$ the local p-adic zeta function.

Example: $f(x, y) = y^2 - x^3$. For $p \notin \{2, 3\}$, $Z_p(s) = \frac{(p-1)(p^{5s+5}-p^{2s+2}+p^{s+2}-1)}{(p^{s+1}-1)(p^{6s+5}-1)}.$ poles at s = -1 and s = -5/6

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin. $\mathcal{F} := \{x \in \mathbb{C}^n : f(x) = \epsilon, ||x|| \le \delta\}, 0 \ll \epsilon \ll \delta.$

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin. $\mathcal{F} := \{x \in \mathbb{C}^n : f(x) = \epsilon, ||x|| \le \delta\}, 0 \ll \epsilon \ll \delta.$ replacing ϵ by $\epsilon \zeta$ for $||\zeta|| = 1$, and letting ζ move around unit circle, obtain a monodromy action

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin. $\mathcal{F} := \{x \in \mathbb{C}^n : f(x) = \epsilon, ||x|| \le \delta\}, 0 \ll \epsilon \ll \delta.$ replacing ϵ by $\epsilon \zeta$ for $||\zeta|| = 1$, and letting ζ move around unit circle, obtain a monodromy action \rightsquigarrow linear map on the cohomology groups $H^i(\mathcal{F}; \mathbb{C})$.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin. $\mathcal{F} := \{x \in \mathbb{C}^n : f(x) = \epsilon, ||x|| \le \delta\}, 0 \ll \epsilon \ll \delta.$ replacing ϵ by $\epsilon \zeta$ for $||\zeta|| = 1$, and letting ζ move around unit circle, obtain a monodromy action \rightsquigarrow linear map on the cohomology groups $H^i(\mathcal{F}; \mathbb{C})$.

Example: $f(x, y) = y^2 - x^3$. \mathcal{F} is homotopic to a wedge of two circles.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin. $\mathcal{F} := \{x \in \mathbb{C}^n : f(x) = \epsilon, ||x|| \le \delta\}, 0 \ll \epsilon \ll \delta.$ replacing ϵ by $\epsilon \zeta$ for $||\zeta|| = 1$, and letting ζ move around unit circle, obtain a monodromy action \rightsquigarrow linear map on the cohomology groups $H^i(\mathcal{F}; \mathbb{C})$.

Example: $f(x, y) = y^2 - x^3$. \mathcal{F} is homotopic to a wedge of two circles. The monodromy map on $H^1(\mathcal{F})$ is

$$\begin{bmatrix} \exp(2\pi i(-1/6)) & 0 \\ 0 & \exp(2\pi i(-5/6)). \end{bmatrix}$$

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

topology

Let \mathcal{F} be the *Milnor fiber* of f at the origin. $\mathcal{F} := \{x \in \mathbb{C}^n : f(x) = \epsilon, ||x|| \le \delta\}, 0 \ll \epsilon \ll \delta.$ replacing ϵ by $\epsilon \zeta$ for $||\zeta|| = 1$, and letting ζ move around unit circle, obtain a monodromy action \rightsquigarrow linear map on the cohomology groups $H^i(\mathcal{F}; \mathbb{C})$.

Example: $f(x, y) = y^2 - x^3$. \mathcal{F} is homotopic to a wedge of two circles. The monodromy map on $H^1(\mathcal{F})$ is

$$\begin{bmatrix} \exp(2\pi i(-1/6)) & 0 \\ 0 & \exp(2\pi i(-5/6)). \end{bmatrix}$$

The monodromy map on $H^0(\mathcal{F})$ is [1].

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

The local p-adic monodromy conjecture '91

For all but finitely many primes p, if $\alpha \in \mathbb{Q}$ is a pole of $Z_p(s)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

(Denef '85, Igusa '88, inspired Malgrange '74)

Fix $f \in \mathbb{Z}[x_1,\ldots,x_n]$, $f(\underline{0}) = 0$.

The local p-adic monodromy conjecture '91

For all but finitely many primes p, if $\alpha \in \mathbb{Q}$ is a pole of $Z_p(s)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

(Denef '85, Igusa '88, inspired Malgrange '74)

Technical notes

need Milnor fibers at singular points near origin, not just the origin

・ 同 ト ・ ヨ ト ・ ヨ ト …

Fix
$$f \in \mathbb{Z}[x_1,\ldots,x_n]$$
, $f(\underline{0}) = 0$.

The local p-adic monodromy conjecture '91

For all but finitely many primes p, if $\alpha \in \mathbb{Q}$ is a pole of $Z_p(s)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

(Denef '85, Igusa '88, inspired Malgrange '74) Example: $f(x, y) = y^2 - x^3$. $Z_p(s)$ has poles: $\alpha \in \{-1, -5/6\}$ eigenvalues of monodromy: $\exp(2\pi i\alpha)$ for $\alpha \in \{-1, -5/6, -1/6\}$.

伺 ト イヨ ト イヨ ト

Fix $f \in \mathbb{Z}[x_1, \ldots, x_n]$, $f(\underline{0}) = 0$. Interested in invariants, e.g. $Z_p(s)$, eigenvalues of monodromy, etc. satisfying:

Interested in invariants, e.g. $Z_p(s)$, eigenvalues of monodromy, etc. satisfying:

() Known when $f = x_1^{a_1} \cdots x_n^{a_n}$, for some $a_i \in \mathbb{Z}_{>0}$.

Interested in invariants, e.g. $Z_p(s)$, eigenvalues of monodromy, etc. satisfying:

- **(** Known when $f = x_1^{a_1} \cdots x_n^{a_n}$, for some $a_i \in \mathbb{Z}_{>0}$.
- Sewildering otherwise. Can view as measurement of singularities of f = 0 at $\underline{0}$.

Interested in invariants, e.g. $Z_p(s)$, eigenvalues of monodromy, etc. satisfying:

- **1** Known when $f = x_1^{a_1} \cdots x_n^{a_n}$, for some $a_i \in \mathbb{Z}_{>0}$.
- Bewildering otherwise. Can view as measurement of singularities of f = 0 at <u>0</u>.
- By miracle, can compute by reducing to the monomial case using a resolution of singularities and change of variables formula.

 $(Z_p(s)$ Igusa '75, eigenvalues of monodromy A'Campo '75)

・ 同 ト ・ ヨ ト ・ ヨ ト …

The local motivic zeta function $Z_{mot}(T)$ is a universal such invariant (Denef-Loeser '98). It is a rational function in variable T with coefficients in an appropriate Grothendieck ring of varieties with a group action, defined using motivic integration.

The local motivic zeta function $Z_{mot}(T)$ is a universal such invariant (Denef-Loeser '98). It is a rational function in variable Twith coefficients in an appropriate Grothendieck ring of varieties with a group action, defined using motivic integration. Example: $f(x, y) = y^2 - x^3$. The local motivic zeta function $Z_{mot}(T)$ is

$$\frac{(\mathbb{L}-1)((\frac{(\mathbb{L}-1)\mathbb{L}^{-1}T}{1-\mathbb{L}^{-1}T}+[Y_{F}(1)])\mathbb{L}^{-5}T^{6}+[\mu_{3}]\mathbb{L}^{-2}T^{3}(1+\mathbb{L}^{-3}T^{3})+[\mu_{2}]\mathbb{L}^{-1}T^{2}(1+\mathbb{L}^{-2}T^{2}+\mathbb{L}^{-4}T^{-4}))}{1-\mathbb{L}^{-5}T^{6}},$$

where $\mathbb{L} = [\mathbb{A}^1]$, $Y_F(1)$ is an elliptic curve minus 6 points, with a free μ_6 -action, and $Y_F(1)/\mu_6$ is isomorphic to \mathbb{P}^1 minus 3 points.

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F};\mathbb{C})$.

This formulation is Bultot-Nicaise '20.

Technical notes

defining "pole" is a bit subtle; need Milnor fibers at singular points near origin, not just the origin

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F};\mathbb{C})$.

This formulation is Bultot-Nicaise '20.

There are a lot of variants: choose adjectives from {local,global}, {motivic, naive motivic, p-adic, topological};

・ 何 ト ・ ヨ ト ・ ヨ ト

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F};\mathbb{C})$.

This formulation is Bultot-Nicaise '20.

There are a lot of variants: choose adjectives from {local,global}, {motivic, naive motivic, p-adic, topological}; other versions: strong, twisted etc.

・ 同 ト ・ ヨ ト ・ ヨ ト
If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

∃ ► < ∃ ►</p>

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

n = 2: p-adic (Loeser '88), topological (Veys '97), naive motivic (Rodrigues '04), full generality (Bultot-Nicaise '20)

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

n = 2: p-adic (Loeser '88), topological (Veys '97), naive motivic (Rodrigues '04), full generality (Bultot-Nicaise '20) n > 2 wide open

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

n = 2: p-adic (Loeser '88), topological (Veys '97), naive motivic (Rodrigues '04), full generality (Bultot-Nicaise '20) n > 2 wide open vast literature; when n = 3, special cases due to Artalo Bartolo, Cassou-Nogues, Luengo, Melle Hernandez, Lemahieu, Veys, ...

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

roughly three approaches:

• • = • • = •

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(T)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

roughly three approaches:

• geometry/combinatorics of resolutions $Z_{\rm mot}(\mathcal{T})$ is intrinsically defined. Any resolution of singularities gives set of "candidate poles", most not poles. Can you decide which "candidate poles" are poles? Similarly, which "candidate eigenvalues" are eigenvalues.

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(T)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

roughly three approaches:

- geometry/combinatorics of resolutions $Z_{\rm mot}(\mathcal{T})$ is intrinsically defined. Any resolution of singularities gives set of "candidate poles", most not poles. Can you decide which "candidate poles" are poles? Similarly, which "candidate eigenvalues" are eigenvalues.
- semi-algebraic geometry (Nicaise, Sebag '08) give Milnor fiber structure of smooth rigid variety, *analytic Milnor fiber*, realise $Z_{mot}(T)$ is a Weil-type invariant.

(日本) (日本) (日本)

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Combinatorial approach:

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Combinatorial approach: The notion of a *nondegenerate* polynomial due to Dwork '62, Varchenko '76, Gelfand-Kapranov-Zelevinsky '90.

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Combinatorial approach: The notion of a *nondegenerate* polynomial due to Dwork '62, Varchenko '76, Gelfand-Kapranov-Zelevinsky '90. smoothness condition that holds "generically"

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(T)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Combinatorial approach: The notion of a *nondegenerate* polynomial due to Dwork '62, Varchenko '76, Gelfand-Kapranov-Zelevinsky '90. smoothness condition that holds "generically" bridge: geometry \longleftrightarrow combinatorics

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(T)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Combinatorial approach:

The notion of a *nondegenerate* polynomial due to Dwork '62, Varchenko '76, Gelfand-Kapranov-Zelevinsky '90. smoothness condition that holds "generically" bridge: geometry \longleftrightarrow combinatorics "combinatorial" formulas for zeta functions (Denef-Loeser '92, Guibert '02, Bories-Veys '16, Bultot-Nicaise '20) and eigenvalues of monodromy (Varchenko '76).

周 🕨 🖌 🖻 🕨 🖌 🗐 🕨

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

formulas involve the Newton polyhedron Newt(f) of f.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

formulas involve the Newton polyhedron Newt(f) of f. Example: $f(x, y) = y^2 - x^3$.

伺 ト イヨ ト イヨ ト

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

formulas involve the Newton polyhedron Newt(f) of f. Example: $f(x, y) = y^2 - x^3$.

Alan Stapledon The local motivic monodromy conjecture holds generically

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Assume f is nondegenerate.

∃ ► < ∃ ►</p>

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Assume f is nondegenerate. Loeser '90: n = 2 (strong version)

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Assume f is nondegenerate. Loeser '90: n = 2 (strong version) Lemahieu-Van Proeyen '11: n = 3 topological

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Assume f is nondegenerate. Loeser '90: n = 2 (strong version) Lemahieu-Van Proeyen '11: n = 3 topological Bories-Veys '16, Quek '22: n = 3 naive motivic

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Assume f is nondegenerate. Loeser '90: n = 2 (strong version) Lemahieu-Van Proeyen '11: n = 3 topological Bories-Veys '16, Quek '22: n = 3 naive motivic open for n > 3

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Assume f is nondegenerate. Loeser '90: n = 2 (strong version) Lemahieu-Van Proeyen '11: n = 3 topological Bories-Veys '16, Quek '22: n = 3 naive motivic open for n > 3

Fundamental problems:

- formulas for "candidate poles" and "candidate eigenvalues" involve lots of cancellation
- combinatorics of polytopes often difficult in dimension 4 and above

伺 ト イヨト イヨト

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(T)$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F};\mathbb{C})$.

∃ ► < ∃ ►</p>

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text{mot}}(\mathcal{T})$, then $\exp(2\pi i\alpha)$ is an eigenvalue of monodromy for $H^*(\mathcal{F}; \mathbb{C})$.

Theorem (Larson-Payne-S. '22)

The local motivic monodromy conjecture holds generically.

- "generically" = nondegenerate + technical condition
- e.g. nondegenerate and $n \leq 3$,
- e.g. nondegenerate and simplicial Newton polyhedron

伺 ト く ヨ ト く ヨ ト

A B M A B M

• Varchenko '76 gave a formula for eigenvalues of monodromy. Open question: formulas for Jordan block structure (more generally, mixed Hodge numbers).

∃ ► < ∃ ►</p>

- Varchenko '76 gave a formula for eigenvalues of monodromy. Open question: formulas for Jordan block structure (more generally, mixed Hodge numbers).
- Solved by S. '17. Corollary is non-negative version of Varchenko's result.

- Varchenko '76 gave a formula for eigenvalues of monodromy. Open question: formulas for Jordan block structure (more generally, mixed Hodge numbers).
- Solved by S. '17. Corollary is non-negative version of Varchenko's result.
- Formula involves terms of two types: from Ehrhart theory and from triangulations of simplices.

Let S be a triangulation of a simplex Δ. The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- $\ell(S; t)$ has non-negative integer coefficients

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- *l*(S; t) has non-negative integer coefficients
 naturally appears when applying the decomposition theorem
 to proper toric morphisms

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- *l*(S; t) has non-negative integer coefficients
 naturally appears when applying the decomposition theorem
 to proper toric morphisms
- ℓ(S; t) = 0 means S is a "minimal extension" of the restriction of S to the boundary of Δ

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- *l*(S; t) has non-negative integer coefficients
 naturally appears when applying the decomposition theorem
 to proper toric morphisms
- $\ell(S; t) = 0$ means S is a "minimal extension" of the restriction of S to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92:

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- *l*(S; t) has non-negative integer coefficients
 naturally appears when applying the decomposition theorem
 to proper toric morphisms
- $\ell(S; t) = 0$ means S is a "minimal extension" of the restriction of S to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92:
 Can characterize triangulations S with l(S; t) = 0?

伺下 イヨト イヨト

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- *l*(S; t) has non-negative integer coefficients
 naturally appears when applying the decomposition theorem
 to proper toric morphisms
- $\ell(S; t) = 0$ means S is a "minimal extension" of the restriction of S to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92:
 Can characterize triangulations S with l(S; t) = 0?
- dim \leq 3 [deMoura-Gunther-Payne-Schuchardt-S. '20]

周 ト イ ヨ ト イ ヨ ト

- Let S be a triangulation of a simplex Δ.
 The *local h-polynomial* ℓ(S; t) of S was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).
- *l*(S; t) has non-negative integer coefficients
 naturally appears when applying the decomposition theorem
 to proper toric morphisms
- $\ell(S; t) = 0$ means S is a "minimal extension" of the restriction of S to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92:
 Can characterize triangulations S with l(S; t) = 0?
- dim ≤ 3 [deMoura-Gunther-Payne-Schuchardt-S. '20] open dim > 3.

伺 ト イヨト イヨト

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

э

• • = • • = •

Let S be a triangulation of a simplex Δ . An interior face F of S is a *U-pyramid* if there exists a vertex A such that $F \setminus A$ is contained in a unique facet of Δ .

Let S be a triangulation of a simplex Δ . An interior face F of S is a *U-pyramid* if there exists a vertex A such that $F \setminus A$ is contained in a unique facet of Δ .

Theorem (Larson-Payne-S. '22)

Let S be a triangulation of a simplex. Suppose $\ell(S; t) = 0$. Then any interior face of S that admits a full partition is a U-pyramid.

Let S be a triangulation of a simplex Δ . An interior face F of S is a *U-pyramid* if there exists a vertex A such that $F \setminus A$ is contained in a unique facet of Δ .

Theorem (Larson-Payne-S. '22)

Let S be a triangulation of a simplex. Suppose $\ell(S; t) = 0$. Then any interior face of S that admits a full partition is a U-pyramid.

Ex: if F is not a pyramid, then a full partition is a decomposition $F = F_1 \sqcup F_2$, with F_1, F_2 interior faces.

伺下 イヨト イヨト

Red faces are not *U*-pyramids \rightsquigarrow obstruction to $\ell(S; t) = 0$

∃ ► < ∃ ►</p>

Red faces are not *U*-pyramids \rightsquigarrow obstruction to $\ell(S; t) = 0$

★ ∃ ► < ∃ ►</p>