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Conjecture (first approximation)

Fix f ∈ Z[x1, . . . , xn], f (0) = 0.

Ex: f (x , y) = y2 − x3.
Want to understand solutions to f = 0 locally near 0.
arithmetic: xi ∈ Z/pmZ, topology: xi ∈ C

Local monodromy conjectures

If α ∈ Q is a pole of a rational function associated to f, then
exp(2πiα) is an eigenvalue of a matrix associated to f.
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Conjecture (second approximation)

Fix f ∈ Z[x1, . . . , xn], f (0) = 0.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

{|{x ∈ (Z/pmZ)n : f (x) = 0, x ≡ 0 mod p}| : m ∈ Z>0}

encoded by a rational function (Igusa ’75, conjectured by
Borewicz-Shafarevich ’66):

Zp(s) the local p-adic zeta function.

Example: f (x , y) = y2 − x3.
For p /∈ {2, 3},

Zp(s) =
(p − 1)(p5s+5 − p2s+2 + ps+2 − 1)

(ps+1 − 1)(p6s+5 − 1)
.

poles at s = −1 and s = −5/6
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Conjecture (second approximation)

Fix f ∈ Z[x1, . . . , xn], f (0) = 0.

topology

Let F be the Milnor fiber of f at the origin.
F := {x ∈ Cn : f (x) = ε, ||x || ≤ δ}, 0� ε� δ.
replacing ε by εζ for ||ζ|| = 1, and letting ζ move around unit
circle, obtain a monodromy action
 linear map on the cohomology groups H i (F ;C).

Example: f (x , y) = y2 − x3.
F is homotopic to a wedge of two circles.
The monodromy map on H1(F) is[

exp(2πi(−1/6)) 0
0 exp(2πi(−5/6)).

]
The monodromy map on H0(F) is

[
1
]
.
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Conjecture (second approximation)

Fix f ∈ Z[x1, . . . , xn], f (0) = 0.

The local p-adic monodromy conjecture ’91

For all but finitely many primes p, if α ∈ Q is a pole of Zp(s), then
exp(2πiα) is an eigenvalue of monodromy for H∗(F ;C).

(Denef ’85, Igusa ’88, inspired Malgrange ’74)
Example: f (x , y) = y2 − x3.
Zp(s) has poles: α ∈ {−1,−5/6}
eigenvalues of monodromy: exp(2πiα) for α ∈ {−1,−5/6,−1/6}.
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Technical notes
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Conjecture (third approximation)

Fix f ∈ Z[x1, . . . , xn], f (0) = 0.
Interested in invariants, e.g. Zp(s), eigenvalues of monodromy, etc.
satisfying:

1 Known when f = xa11 · · · xann , for some ai ∈ Z>0.

2 Bewildering otherwise. Can view as measurement of
singularities of f = 0 at 0.

3 By miracle, can compute by reducing to the monomial case
using a resolution of singularities and change of variables
formula.
(Zp(s) Igusa ’75, eigenvalues of monodromy A’Campo ’75)
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Conjecture (third approximation)

The local motivic zeta function Zmot(T ) is a universal such
invariant (Denef-Loeser ’98). It is a rational function in variable T
with coefficients in an appropriate Grothendieck ring of varieties
with a group action, defined using motivic integration.

Example: f (x , y) = y2 − x3.
The local motivic zeta function Zmot(T ) is

(L − 1)
(( (L−1)L−1T

1−L−1T
+ [YF (1)]

)
L−5T6 + [µ3]L−2T3(1 + L−3T 3) + [µ2]L−1T 2(1 + L−2T 2 + L−4T−4)

)
1 − L−5T 6

,

where L = [A1], YF (1) is an elliptic curve minus 6 points, with a
free µ6-action, and YF (1)/µ6 is isomorphic to P1 minus 3 points.
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Conjecture (third approximation)

motivic zeta function Zmot(T )

naive motivic zeta function motivic nearby fibre

p-adic zeta function Zp(s) topological zeta function monodromy zeta function

The local motivic monodromy conjecture

If α ∈ Q is a pole of Zmot(T ), then exp(2πiα) is an eigenvalue of
monodromy for H∗(F ;C).

This formulation is Bultot-Nicaise ’20.
There are a lot of variants: choose adjectives from {local,global},
{motivic, naive motivic, p-adic, topological}; other versions:
strong, twisted etc.
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History

The local motivic monodromy conjecture

If α ∈ Q is a pole of Zmot(T ), then exp(2πiα) is an eigenvalue of
monodromy for H∗(F ;C).

n = 2: p-adic (Loeser ’88), topological (Veys ’97), naive motivic
(Rodrigues ’04), full generality (Bultot-Nicaise ’20)
n > 2 wide open
vast literature; when n = 3, special cases due to Artalo Bartolo,
Cassou-Nogues, Luengo, Melle Hernandez, Lemahieu, Veys, ...
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n > 2 wide open
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roughly three approaches:

geometry/combinatorics of resolutions
Zmot(T ) is intrinsically defined. Any resolution of singularities
gives set of “candidate poles”, most not poles. Can you
decide which “candidate poles” are poles? Similarly, which
“candidate eigenvalues” are eigenvalues.

semi-algebraic geometry (Nicaise, Sebag ’08)
give Milnor fiber structure of smooth rigid variety, analytic
Milnor fiber, realise Zmot(T ) is a Weil-type invariant.
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The local motivic monodromy conjecture

If α ∈ Q is a pole of Zmot(T ), then exp(2πiα) is an eigenvalue of
monodromy for H∗(F ;C).

Combinatorial approach:

The notion of a nondegenerate polynomial due to Dwork ’62,
Varchenko ’76, Gelfand-Kapranov-Zelevinsky ’90.
smoothness condition that holds “generically”
bridge: geometry ! combinatorics
“combinatorial” formulas for zeta functions (Denef-Loeser ’92,
Guibert ’02, Bories-Veys ’16, Bultot-Nicaise ’20) and eigenvalues
of monodromy (Varchenko ’76).
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History

The local motivic monodromy conjecture

If α ∈ Q is a pole of Zmot(T ), then exp(2πiα) is an eigenvalue of
monodromy for H∗(F ;C).

formulas involve the Newton polyhedron Newt(f ) of f .

Example: f (x , y) = y2 − x3.

(3, 0)

(0, 2)

Newt(f )
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History

The local motivic monodromy conjecture

If α ∈ Q is a pole of Zmot(T ), then exp(2πiα) is an eigenvalue of
monodromy for H∗(F ;C).

Assume f is nondegenerate.

Loeser ’90: n = 2 (strong version)
Lemahieu-Van Proeyen ’11: n = 3 topological
Bories-Veys ’16, Quek ’22: n = 3 naive motivic
open for n > 3
Fundamental problems:

formulas for “candidate poles” and “candidate eigenvalues”
involve lots of cancellation

combinatorics of polytopes often difficult in dimension 4 and
above
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A new frontier

The local motivic monodromy conjecture

If α ∈ Q is a pole of Zmot(T ), then exp(2πiα) is an eigenvalue of
monodromy for H∗(F ;C).

Theorem (Larson-Payne-S. ’22)

The local motivic monodromy conjecture holds generically.

“generically” = nondegenerate + technical condition
e.g. nondegenerate and n ≤ 3,
e.g. nondegenerate and simplicial Newton polyhedron
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A new frontier

Starting point: assume f nondegenerate

Varchenko ’76 gave a formula for eigenvalues of monodromy.
Open question: formulas for Jordan block structure (more
generally, mixed Hodge numbers).

Solved by S. ’17. Corollary is non-negative version of
Varchenko’s result.

Formula involves terms of two types: from Ehrhart theory and
from triangulations of simplices.
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A new frontier

Let S be a triangulation of a simplex ∆.
The local h-polynomial `(S; t) of S was introduced by Stanley
’92 (we actually use generalization Athanasiadis, Nill ’12).

`(S; t) has non-negative integer coefficients
naturally appears when applying the decomposition theorem
to proper toric morphisms

`(S; t) = 0 means S is a “minimal extension” of the
restriction of S to the boundary of ∆

Understanding which eigenvalues of monodromy appear would
follow from a solution to a question of Stanley ’92:
Can characterize triangulations S with `(S; t) = 0?

dim ≤ 3 [deMoura-Gunther-Payne-Schuchardt-S. ’20]
open dim > 3.
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A new frontier

`(S; t) 6= 0 `(S; t) = 0
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A new frontier

α ∈ Q

collection of local h-polynomials

are they all zero?

structure theorem eigenvalue

not a pole

yes no
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A new frontier

A (simplified version of) structure theorem:

Let S be a triangulation of a simplex ∆. An interior face F of S is
a U-pyramid if there exists a vertex A such that F rA is contained
in a unique facet of ∆.

Theorem (Larson-Payne-S. ’22)

Let S be a triangulation of a simplex. Suppose `(S; t) = 0. Then
any interior face of S that admits a full partition is a U-pyramid.

Ex: if F is not a pyramid, then a full partition is a decomposition
F = F1 t F2, with F1,F2 interior faces.
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