The local motivic monodromy conjecture holds generically

Alan Stapledon

SMRI

31 May, 2023

Joint work with Matt Larson and Sam Payne

Conjecture (first approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

Conjecture (first approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Ex: $f(x, y)=y^{2}-x^{3}$.

Conjecture (first approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Ex: $f(x, y)=y^{2}-x^{3}$.
Want to understand solutions to $f=0$ locally near $\underline{0}$.

Conjecture (first approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Ex: $f(x, y)=y^{2}-x^{3}$.
Want to understand solutions to $f=0$ locally near $\underline{0}$. arithmetic: $x_{i} \in \mathbb{Z} / p^{m} \mathbb{Z}$, topology: $x_{i} \in \mathbb{C}$

Conjecture (first approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Ex: $f(x, y)=y^{2}-x^{3}$.
Want to understand solutions to $f=0$ locally near $\underline{0}$. arithmetic: $x_{i} \in \mathbb{Z} / p^{m} \mathbb{Z}$, topology: $x_{i} \in \mathbb{C}$

Local monodromy conjectures
If $\alpha \in \mathbb{Q}$ is a pole of a rational function associated to f , then $\exp (2 \pi i \alpha)$ is an eigenvalue of a matrix associated to f.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$
\left\{\left|\left\{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}: f(x)=0, x \equiv \underline{0} \bmod p\right\}\right|: m \in \mathbb{Z}_{>0}\right\}
$$

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Fix a prime p . Consider the sequence of non-negative integers:

$$
\left\{\left|\left\{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}: f(x)=0, x \equiv \underline{0} \bmod p\right\}\right|: m \in \mathbb{Z}_{>0}\right\}
$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Fix a prime p . Consider the sequence of non-negative integers:

$$
\left\{\left|\left\{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}: f(x)=0, x \equiv \underline{0} \bmod p\right\}\right|: m \in \mathbb{Z}_{>0}\right\}
$$

encoded by a rational function (lgusa '75, conjectured by Borewicz-Shafarevich '66):
$Z_{p}(s)$ the local p-adic zeta function.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$
\left\{\left|\left\{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}: f(x)=0, x \equiv \underline{0} \bmod p\right\}\right|: m \in \mathbb{Z}_{>0}\right\}
$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):
$Z_{p}(s)$ the local p-adic zeta function.
Example: $f(x, y)=y^{2}-x^{3}$.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$
\left\{\left|\left\{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}: f(x)=0, x \equiv \underline{0} \bmod p\right\}\right|: m \in \mathbb{Z}_{>0}\right\}
$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

$$
Z_{p}(s) \text { the local p-adic zeta function. }
$$

Example: $f(x, y)=y^{2}-x^{3}$.
For $p \notin\{2,3\}$,

$$
Z_{p}(s)=\frac{(p-1)\left(p^{5 s+5}-p^{2 s+2}+p^{s+2}-1\right)}{\left(p^{s+1}-1\right)\left(p^{6 s+5}-1\right)}
$$

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

arithmetic

Fix a prime p. Consider the sequence of non-negative integers:

$$
\left\{\left|\left\{x \in\left(\mathbb{Z} / p^{m} \mathbb{Z}\right)^{n}: f(x)=0, x \equiv \underline{0} \bmod p\right\}\right|: m \in \mathbb{Z}_{>0}\right\}
$$

encoded by a rational function (Igusa '75, conjectured by Borewicz-Shafarevich '66):

$Z_{p}(s)$ the local p-adic zeta function.

Example: $f(x, y)=y^{2}-x^{3}$.
For $p \notin\{2,3\}$,

$$
Z_{p}(s)=\frac{(p-1)\left(p^{5 s+5}-p^{2 s+2}+p^{s+2}-1\right)}{\left(p^{s+1}-1\right)\left(p^{6 s+5}-1\right)}
$$

poles at $s=-1$ and $s=-5 / 6$

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
topology

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin. $\mathcal{F}:=\left\{x \in \mathbb{C}^{n}: f(x)=\epsilon,\|x\| \leq \delta\right\}, 0 \ll \epsilon \ll \delta$.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin.
$\mathcal{F}:=\left\{x \in \mathbb{C}^{n}: f(x)=\epsilon,\|x\| \leq \delta\right\}, 0 \ll \epsilon \ll \delta$.
replacing ϵ by $\epsilon \zeta$ for $\|\zeta\|=1$, and letting ζ move around unit circle, obtain a monodromy action

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin.
$\mathcal{F}:=\left\{x \in \mathbb{C}^{n}: f(x)=\epsilon,\|x\| \leq \delta\right\}, 0 \ll \epsilon \ll \delta$.
replacing ϵ by $\epsilon \zeta$ for $\|\zeta\|=1$, and letting ζ move around unit circle, obtain a monodromy action
\rightsquigarrow linear map on the cohomology groups $H^{i}(\mathcal{F} ; \mathbb{C})$.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin.
$\mathcal{F}:=\left\{x \in \mathbb{C}^{n}: f(x)=\epsilon,\|x\| \leq \delta\right\}, 0 \ll \epsilon \ll \delta$.
replacing ϵ by $\epsilon \zeta$ for $\|\zeta\|=1$, and letting ζ move around unit circle, obtain a monodromy action
\rightsquigarrow linear map on the cohomology groups $H^{i}(\mathcal{F} ; \mathbb{C})$.
Example: $f(x, y)=y^{2}-x^{3}$.
\mathcal{F} is homotopic to a wedge of two circles.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin.
$\mathcal{F}:=\left\{x \in \mathbb{C}^{n}: f(x)=\epsilon,\|x\| \leq \delta\right\}, 0 \ll \epsilon \ll \delta$.
replacing ϵ by $\epsilon \zeta$ for $\|\zeta\|=1$, and letting ζ move around unit circle, obtain a monodromy action
\rightsquigarrow linear map on the cohomology groups $H^{i}(\mathcal{F} ; \mathbb{C})$.
Example: $f(x, y)=y^{2}-x^{3}$.
\mathcal{F} is homotopic to a wedge of two circles.
The monodromy map on $H^{1}(\mathcal{F})$ is

$$
\left[\begin{array}{cc}
\exp (2 \pi i(-1 / 6)) & 0 \\
0 & \exp (2 \pi i(-5 / 6))
\end{array}\right]
$$

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

topology

Let \mathcal{F} be the Milnor fiber of f at the origin.
$\mathcal{F}:=\left\{x \in \mathbb{C}^{n}: f(x)=\epsilon,\|x\| \leq \delta\right\}, 0 \ll \epsilon \ll \delta$.
replacing ϵ by $\epsilon \zeta$ for $\|\zeta\|=1$, and letting ζ move around unit circle, obtain a monodromy action
\rightsquigarrow linear map on the cohomology groups $H^{i}(\mathcal{F} ; \mathbb{C})$.
Example: $f(x, y)=y^{2}-x^{3}$.
\mathcal{F} is homotopic to a wedge of two circles.
The monodromy map on $H^{1}(\mathcal{F})$ is

$$
\left[\begin{array}{cc}
\exp (2 \pi i(-1 / 6)) & 0 \\
0 & \exp (2 \pi i(-5 / 6))
\end{array}\right]
$$

The monodromy map on $H^{0}(\mathcal{F})$ is [1].

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

The local p-adic monodromy conjecture '91

For all but finitely many primes p, if $\alpha \in \mathbb{Q}$ is a pole of $Z_{p}(s)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
(Denef '85, Igusa '88, inspired Malgrange '74)

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

The local p-adic monodromy conjecture '91

For all but finitely many primes p, if $\alpha \in \mathbb{Q}$ is a pole of $Z_{p}(s)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
(Denef '85, Igusa '88, inspired Malgrange '74)

Technical notes

need Milnor fibers at singular points near origin, not just the origin

Conjecture (second approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.

The local p-adic monodromy conjecture '91

For all but finitely many primes p, if $\alpha \in \mathbb{Q}$ is a pole of $Z_{p}(s)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
(Denef '85, Igusa '88, inspired Malgrange '74)
Example: $f(x, y)=y^{2}-x^{3}$.
$Z_{p}(s)$ has poles: $\alpha \in\{-1,-5 / 6\}$
eigenvalues of monodromy: $\exp (2 \pi i \alpha)$ for $\alpha \in\{-1,-5 / 6,-1 / 6\}$.

Conjecture (third approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Interested in invariants, e.g. $Z_{p}(s)$, eigenvalues of monodromy, etc. satisfying:

Conjecture (third approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Interested in invariants, e.g. $Z_{p}(s)$, eigenvalues of monodromy, etc. satisfying:
(1) Known when $f=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, for some $a_{i} \in \mathbb{Z}_{>0}$.

Conjecture (third approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Interested in invariants, e.g. $Z_{p}(s)$, eigenvalues of monodromy, etc. satisfying:
(1) Known when $f=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, for some $a_{i} \in \mathbb{Z}_{>0}$.
(Bewildering otherwise. Can view as measurement of singularities of $f=0$ at $\underline{0}$.

Conjecture (third approximation)

Fix $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], f(\underline{0})=0$.
Interested in invariants, e.g. $Z_{p}(s)$, eigenvalues of monodromy, etc. satisfying:
(1) Known when $f=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$, for some $a_{i} \in \mathbb{Z}_{>0}$.
(2) Bewildering otherwise. Can view as measurement of singularities of $f=0$ at $\underline{0}$.
(3) By miracle, can compute by reducing to the monomial case using a resolution of singularities and change of variables formula.
($Z_{p}(s)$ Igusa '75, eigenvalues of monodromy A'Campo '75)

Conjecture (third approximation)

The local motivic zeta function $Z_{\text {mot }}(T)$ is a universal such invariant (Denef-Loeser '98). It is a rational function in variable T with coefficients in an appropriate Grothendieck ring of varieties with a group action, defined using motivic integration.

Conjecture (third approximation)

The local motivic zeta function $Z_{\text {mot }}(T)$ is a universal such invariant (Denef-Loeser '98). It is a rational function in variable T with coefficients in an appropriate Grothendieck ring of varieties with a group action, defined using motivic integration.
Example: $f(x, y)=y^{2}-x^{3}$.
The local motivic zeta function $Z_{\text {mot }}(T)$ is
$\frac{(\mathbb{L}-1)\left(\left(\frac{(\mathbb{L}-1) \mathbb{L}^{-1} T}{1-\mathbb{L}^{-1} T}+\left[Y_{F}(1)\right]\right) \mathbb{L}^{-5} T^{6}+\left[\mu_{3}\right] \mathbb{L}^{-2} T^{3}\left(1+\mathbb{L}^{-3} T^{3}\right)+\left[\mu_{2}\right] \mathbb{L}^{-1} T^{2}\left(1+\mathbb{L}^{-2} T^{2}+\mathbb{L}^{-4} T^{-4}\right)\right)}{1-\mathbb{L}^{-5} T^{6}}$,
where $\mathbb{L}=\left[\mathbb{A}^{1}\right], Y_{F}(1)$ is an elliptic curve minus 6 points, with a free μ_{6}-action, and $Y_{F}(1) / \mu_{6}$ is isomorphic to \mathbb{P}^{1} minus 3 points.

Conjecture (third approximation)

Conjecture (third approximation)

The local motivic monodromy conjecture
 If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Conjecture (third approximation)

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

This formulation is Bultot-Nicaise '20.

Technical notes

defining "pole" is a bit subtle; need Milnor fibers at singular points near origin, not just the origin

Conjecture (third approximation)

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\mathrm{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

This formulation is Bultot-Nicaise '20.
There are a lot of variants: choose adjectives from \{local,global\}, \{motivic, naive motivic, p-adic, topological\};

Conjecture (third approximation)

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\mathrm{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

This formulation is Bultot-Nicaise '20.
There are a lot of variants: choose adjectives from \{local,global\}, \{motivic, naive motivic, p-adic, topological\}; other versions: strong, twisted etc.

History

The local motivic monodromy conjecture
If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
$n=2$: p-adic (Loeser '88), topological (Veys '97), naive motivic (Rodrigues '04), full generality (Bultot-Nicaise '20)

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
$n=2$: p-adic (Loeser '88), topological (Veys '97), naive motivic (Rodrigues '04), full generality (Bultot-Nicaise '20)
$n>2$ wide open

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
$n=2$: p-adic (Loeser '88), topological (Veys '97), naive motivic (Rodrigues '04), full generality (Bultot-Nicaise '20)
$n>2$ wide open
vast literature; when $n=3$, special cases due to Artalo Bartolo, Cassou-Nogues, Luengo, Melle Hernandez, Lemahieu, Veys, ...

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
roughly three approaches:

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
roughly three approaches:

- geometry/combinatorics of resolutions
$Z_{\text {mot }}(T)$ is intrinsically defined. Any resolution of singularities gives set of "candidate poles", most not poles. Can you decide which "candidate poles" are poles? Similarly, which "candidate eigenvalues" are eigenvalues.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
roughly three approaches:

- geometry/combinatorics of resolutions
$Z_{\text {mot }}(T)$ is intrinsically defined. Any resolution of singularities gives set of "candidate poles", most not poles. Can you decide which "candidate poles" are poles? Similarly, which "candidate eigenvalues" are eigenvalues.
- semi-algebraic geometry (Nicaise, Sebag '08) give Milnor fiber structure of smooth rigid variety, analytic Milnor fiber, realise $Z_{\operatorname{mot}}(T)$ is a Weil-type invariant.

History

The local motivic monodromy conjecture
 If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Combinatorial approach:

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\mathrm{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Combinatorial approach:
The notion of a nondegenerate polynomial due to Dwork '62, Varchenko '76, Gelfand-Kapranov-Zelevinsky '90.

History

The local motivic monodromy conjecture
 If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\operatorname{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Combinatorial approach:
The notion of a nondegenerate polynomial due to Dwork '62,
Varchenko '76, Gelfand-Kapranov-Zelevinsky '90. smoothness condition that holds "generically"

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\mathrm{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Combinatorial approach:
The notion of a nondegenerate polynomial due to Dwork '62,
Varchenko '76, Gelfand-Kapranov-Zelevinsky '90. smoothness condition that holds "generically" bridge: geometry $\rightsquigarrow>$ combinatorics

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\operatorname{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Combinatorial approach:
The notion of a nondegenerate polynomial due to Dwork '62,
Varchenko '76, Gelfand-Kapranov-Zelevinsky '90. smoothness condition that holds "generically" bridge: geometry $\rightsquigarrow>$ combinatorics "combinatorial" formulas for zeta functions (Denef-Loeser '92, Guibert '02, Bories-Veys '16, Bultot-Nicaise '20) and eigenvalues of monodromy (Varchenko '76).

History

The local motivic monodromy conjecture
 If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\operatorname{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

formulas involve the Newton polyhedron $\operatorname{Newt}(f)$ of f.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\operatorname{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
formulas involve the Newton polyhedron $\operatorname{Newt}(f)$ of f. Example: $f(x, y)=y^{2}-x^{3}$.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\mathrm{mot}}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.
formulas involve the Newton polyhedron $\operatorname{Newt}(f)$ of f. Example: $f(x, y)=y^{2}-x^{3}$.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Assume f is nondegenerate.

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Assume f is nondegenerate.
Loeser '90: $n=2$ (strong version)

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Assume f is nondegenerate.
Loeser '90: $n=2$ (strong version)
Lemahieu-Van Proeyen '11: $n=3$ topological

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Assume f is nondegenerate.
Loeser '90: $n=2$ (strong version)
Lemahieu-Van Proeyen '11: $n=3$ topological
Bories-Veys '16, Quek '22: $n=3$ naive motivic

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Assume f is nondegenerate.
Loeser '90: $n=2$ (strong version)
Lemahieu-Van Proeyen '11: $n=3$ topological
Bories-Veys '16, Quek '22: $n=3$ naive motivic open for $n>3$

History

The local motivic monodromy conjecture

If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Assume f is nondegenerate.
Loeser '90: $n=2$ (strong version)
Lemahieu-Van Proeyen '11: $n=3$ topological
Bories-Veys '16, Quek '22: $n=3$ naive motivic open for $n>3$
Fundamental problems:

- formulas for "candidate poles" and "candidate eigenvalues" involve lots of cancellation
- combinatorics of polytopes often difficult in dimension 4 and above

A new frontier

The local motivic monodromy conjecture
If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

A new frontier

> The local motivic monodromy conjecture
> If $\alpha \in \mathbb{Q}$ is a pole of $Z_{\text {mot }}(T)$, then $\exp (2 \pi i \alpha)$ is an eigenvalue of monodromy for $H^{*}(\mathcal{F} ; \mathbb{C})$.

Theorem (Larson-Payne-S. '22)

The local motivic monodromy conjecture holds generically.
"generically" $=$ nondegenerate + technical condition e.g. nondegenerate and $n \leq 3$, e.g. nondegenerate and simplicial Newton polyhedron

A new frontier

Starting point: assume f nondegenerate

Starting point: assume f nondegenerate

- Varchenko '76 gave a formula for eigenvalues of monodromy. Open question: formulas for Jordan block structure (more generally, mixed Hodge numbers).

A new frontier

Starting point: assume f nondegenerate

- Varchenko '76 gave a formula for eigenvalues of monodromy. Open question: formulas for Jordan block structure (more generally, mixed Hodge numbers).
- Solved by S. '17. Corollary is non-negative version of Varchenko's result.

A new frontier

Starting point: assume f nondegenerate

- Varchenko '76 gave a formula for eigenvalues of monodromy. Open question: formulas for Jordan block structure (more generally, mixed Hodge numbers).
- Solved by S. '17. Corollary is non-negative version of Varchenko's result.
- Formula involves terms of two types: from Ehrhart theory and from triangulations of simplices.

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients naturally appears when applying the decomposition theorem to proper toric morphisms

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients naturally appears when applying the decomposition theorem to proper toric morphisms
- $\ell(\mathcal{S} ; t)=0$ means \mathcal{S} is a "minimal extension" of the restriction of \mathcal{S} to the boundary of Δ

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients naturally appears when applying the decomposition theorem to proper toric morphisms
- $\ell(\mathcal{S} ; t)=0$ means \mathcal{S} is a "minimal extension" of the restriction of \mathcal{S} to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92:

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients naturally appears when applying the decomposition theorem to proper toric morphisms
- $\ell(\mathcal{S} ; t)=0$ means \mathcal{S} is a "minimal extension" of the restriction of \mathcal{S} to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92:
Can characterize triangulations \mathcal{S} with $\ell(\mathcal{S} ; t)=0$?

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients naturally appears when applying the decomposition theorem to proper toric morphisms
- $\ell(\mathcal{S} ; t)=0$ means \mathcal{S} is a "minimal extension" of the restriction of \mathcal{S} to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92: Can characterize triangulations \mathcal{S} with $\ell(\mathcal{S} ; t)=0$?
- $\operatorname{dim} \leq 3$ [deMoura-Gunther-Payne-Schuchardt-S. '20]

A new frontier

- Let \mathcal{S} be a triangulation of a simplex Δ.

The local h-polynomial $\ell(\mathcal{S} ; t)$ of \mathcal{S} was introduced by Stanley '92 (we actually use generalization Athanasiadis, Nill '12).

- $\ell(\mathcal{S} ; t)$ has non-negative integer coefficients naturally appears when applying the decomposition theorem to proper toric morphisms
- $\ell(\mathcal{S} ; t)=0$ means \mathcal{S} is a "minimal extension" of the restriction of \mathcal{S} to the boundary of Δ
- Understanding which eigenvalues of monodromy appear would follow from a solution to a question of Stanley '92: Can characterize triangulations \mathcal{S} with $\ell(\mathcal{S} ; t)=0$?
- $\operatorname{dim} \leq 3$ [deMoura-Gunther-Payne-Schuchardt-S. '20] open $\operatorname{dim}>3$.

A new frontier

$\ell(S ; t) \neq 0$

$\ell(S ; t)=0$

$\ell(S ; t) \neq 0$

$\ell(S ; t) \neq 0$

$$
\ell(S ; t)=0
$$

$\ell(S ; t)=0$

A new frontier

A (simplified version of) structure theorem:

A new frontier

A (simplified version of) structure theorem:
Let \mathcal{S} be a triangulation of a simplex Δ. An interior face F of \mathcal{S} is a U-pyramid if there exists a vertex A such that $F \backslash A$ is contained in a unique facet of Δ.

A new frontier

A (simplified version of) structure theorem:
Let \mathcal{S} be a triangulation of a simplex Δ. An interior face F of \mathcal{S} is a U-pyramid if there exists a vertex A such that $F \backslash A$ is contained in a unique facet of Δ.

Theorem (Larson-Payne-S. '22)

Let \mathcal{S} be a triangulation of a simplex. Suppose $\ell(\mathcal{S} ; t)=0$. Then any interior face of \mathcal{S} that admits a full partition is a U-pyramid.

A new frontier

A (simplified version of) structure theorem:
Let \mathcal{S} be a triangulation of a simplex Δ. An interior face F of \mathcal{S} is a U-pyramid if there exists a vertex A such that $F \backslash A$ is contained in a unique facet of Δ.

Theorem (Larson-Payne-S. '22)

Let \mathcal{S} be a triangulation of a simplex. Suppose $\ell(\mathcal{S} ; t)=0$. Then any interior face of \mathcal{S} that admits a full partition is a U-pyramid.

Ex: if F is not a pyramid, then a full partition is a decomposition $F=F_{1} \sqcup F_{2}$, with F_{1}, F_{2} interior faces.

A new frontier

Red faces are not U-pyramids \rightsquigarrow obstruction to $\ell(\mathcal{S} ; t)=0$

$\ell(\mathcal{S} ; t) \neq 0$

$\ell(\mathcal{S} ; t)=0$

A new frontier

Red faces are not U-pyramids \rightsquigarrow obstruction to $\ell(\mathcal{S} ; t)=0$

$\ell(\mathcal{S} ; t) \neq 0$

$\ell(\mathcal{S} ; t) \neq 0$

$\ell(\mathcal{S} ; t)=0$

$\ell(\mathcal{S} ; t)=0$

